If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+33x-3136=0
a = 1; b = 33; c = -3136;
Δ = b2-4ac
Δ = 332-4·1·(-3136)
Δ = 13633
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(33)-\sqrt{13633}}{2*1}=\frac{-33-\sqrt{13633}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(33)+\sqrt{13633}}{2*1}=\frac{-33+\sqrt{13633}}{2} $
| 4(x+6)+13=13 | | 2(x+8)-9=23 | | 4/15+3/8+x=240 | | 1(x+17)+8=30 | | 7(x+15)=56 | | 2y+7=2y+5 | | 1x+14=17 | | 8(x+7)+18=2 | | 3(x+17)=66 | | 5(x+13)+14=94 | | 10=6n-1+5 | | 7(x+7)=-7 | | 2x/7=2=12 | | 3x+13=2x(x+9) | | 0.24/(0.7-0.02x)-0.5=0.5 | | 6(x+14)+8=110 | | 10(x+7)+16=156 | | 4x-9=-27-2x | | 1/2(x+1)=-1 | | x11=x−13 | | 40/26=a10/13 | | 3x+12=7x+6 | | 1(x+5)+6=15 | | 7x-2-4x-5=3(x-1)-4 | | 6(x+11)=72 | | 10(x+16)=160 | | 8(x-4)-13=-13 | | 7(x+7)+9=-5 | | 10(x+16)=170 | | 6(x-16)-8=-122 | | 1.05x=10000 | | 1(x+16)=21 |